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Abstract. Although progress has been made to improve health and safety (H&S) 

outcomes, many companies in high-risk industries struggle to identify health 

risks and avoid safety hazards. In this study, we use Machine Learning (ML) and 

Natural Language Processing (NLP) to predict potential injuries to ankle, back, 

eye, hand, knee, and shoulder in mine operators’ safety reports. We assess the 

performance of four models, including SVM, Random Forest (RF), FastText, and 

BERT, on a transfer learning task. Each model is trained on the publicly available 

MSHA Accident Injuries dataset and then used to predict injuries in partners’ 

internal safety interaction reports. These reports describe events where an injury 

might occur, but none was reported. Our tests showed that the models achieved 

88-90% accuracy when predicting injuries within the MSHA dataset; although 

accuracy rates were lower in the transfer learning test (F1 scores of 61% best case 

for SVM and 48% worst case for BERT), three models (SVM, RF, and FastText) 

performed 81-97% as well as experts. Our results suggest that the models are 

comparable to human experts’ intuition on this task. Association Rule Mining 

(ARM) was then used to discover relationships between injuries and keywords 

in operators’ injury reports. ARM generated 149 rules with a confidence >80%; 

evaluation by four experts deemed 39 rules useful and intuitive. The outcomes of 

this project will help companies improve risk analysis and controls hierarchies, 

laying the foundation for a predictive H&S management system that will reduce 

injuries and fatalities throughout the industry. 

Keywords: Health, Safety, Machine Learning, Natural Language Processing, 

Association Rule Mining. 

1 Introduction 

Health and safety (H&S) are key issues in many high-risk industries, such as mining, 

manufacturing, oil and gas, and construction. Although steady progress has been made 

to improve worker safety, companies struggle with methods to identify occupational 

health risks and avoid conditions giving rise to safety hazards, both of which are essen-

tial for reducing injuries, chronic health conditions, and deaths. The mining industry in 
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particular is oriented toward reactive H&S management, both in the metrics used, such 

as reportable incidents, and the methods for achieving better performance – for exam-

ple, addressing patterns of violation. Furthermore, the design of H&S software systems 

and technologies is equally oriented toward reaction, with dashboards and performance 

graphs prominently displaying “lagging indicators” such as the numbers of injuries, 

hours lost, and hazards on the worksite. There is a need to better utilize the wealth of 

data being collected on mine operations, environmental conditions, and incidents which 

may help managers and front-line workers address H&S issues before they become 

reportable. 

Indeed, proactive H&S management systems are vital to address the human compo-

nents of sustainable mining. This study uses computational intelligence strategies to 

learn the relationships between key leading indicators of H&S and their downstream 

lagging indicators. Leading indicators may include certain worker behaviors, work area 

states, equipment types, or other conditions to be determined. In this work, we focus on 

a subset of lagging indicators that are of high interest both to mine operators and com-

panies in other high risk industries; specifically we focus on injuries to six commonly 

injured body parts: ankle, back, eye, hand (including fingers), knee, and shoulder.  

Using valuable H&S data provided by industry partners, we employ machine learn-

ing (ML) and Natural Language Processing (NLP) to examine the underlying relation-

ships between leading and lagging indicators. This work explores two research ques-

tions: 

1) Can NLP and ML methods automatically predict injury outcomes from oper-

ators’ internal reporting corpus?   

2) Can useful and intuitive leading indicators be derived from reporting corpus 

to inform mitigation strategies for key injury types?  

We evaluate four popular ML/NLP models, including Support Vector Machines 

(SVM), Random Forest (RF), FastText, and Bidirectional Encoder Representations 

from Transformers (BERT) to identify potential injuries. We employ a transfer learning 

approach; the models are trained on a large and readily available dataset and then used 

to predict injuries in a company’s internal reporting corpus – a projected use case to 

enable future generations of safety management systems (SMS). Association Rule Min-

ing (ARM) is then used to discover keyword-injury associations. The predictive tech-

nologies and leading indicators developed in this work will serve as a foundation to 

augment risk management programs and control hierarchies, and ultimately to develop 

a smarter SMS for mining and other high-risk industries. 

2 Background 

The Mine Safety & Health Administration (MSHA) serves as the regulatory body for 

the mining industry in the United States (US). As part of the Open Government initia-

tive, MSHA offers a large, publicly available dataset summarizing all accident and in-

juries at US mine sites [1]. This dataset is frequently analyzed to determine injury types,  

health conditions, and clues on potential causes. The most commonly injured body parts 

have been identified as ankle, back, eye, finger, hand, knee, and shoulder [2][3][4].  
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Workforce H&S outcomes are well documented in the mining industry, although 

there remains an emphasis on negative metrics such as economic burden [5] and lost 

time injury rates [1] (Fig. 1). Although informative of industry trajectory, such metrics 

do not address the root causes of accidents and injuries, nor do they provide insights 

into how accidents may be prevented. Indeed, a focus on reportable injuries and regu-

latory violations – i.e. lagging indicators – have shown only limited correlation with 

improved H&S outcomes; additional study is needed to understand the complex causal 

pathways between leading and lagging indicators and to prevent negative H&S out-

comes [6].  

Fig. 1. Lost-time incidence rate (LTIR) and Occupational illness incidence rate (OIIR) for 

mines in western US from 2000-2018, excluding abandoned mines. 

ML methods offer new ways of discovering leading indicators and developing pre-

dictive models that improve H&S. Such techniques are supported by recent work in a 

variety of industries, including as construction [7][8], energy [9], medicine [10], steel 

[11], and bioinformatics [12]. In particular, SVM, RF, and Artificial Neural Network 

(ANN) are among the most robust and high-performing methods. For example, Poh et 

al. employed several ML methods to develop 13 leading indicators of safety from a 7-

year dataset of a construction company [7]. They also compared the performance of 

Decision Tree (DT), SVM, K-Nearest Neighbor, Logistic Regression, and RF in pre-

dicting construction site accidents on a 3-class classification task (no/minor/major ac-

cident). They found RF performed the best (accuracy=78%). Sarkar et al. found SVMs 

with features generated by DT (C5.0) outperformed ANN with a prediction accuracy 

of 90.7% on an occupational accident prediction task, after applying the same optimi-

zation techniques for both methods [11]. Recent popular NLP methods, such as 

FastText and BERT, have great potential to improve the utility of narrative data, such 
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as incident descriptions and injury reports; these techniques have not yet been ade-

quately explored in the context of H&S for high risk industries[13]. 

There is a need to better understand the relationship between injuries and their up-

stream indicators to facilitate risk management and improve training [14]. For example, 

Brown et al. used grounded theory to aggregate factors and develop a meta-model for 

behavioral risk factors, although the model as yet to be validated for mining [15], while 

Silva & Jacinto applied statistical methods to derive a model of the “typical accident” 

[16]. ML/NLP methods, including Topic Modeling [17], SVM, DT, and Naïve Bayes 

[8], as well as ARM [18], have also been applied to explore reporting corpus and iden-

tify causal factors of incidents in mining and allied industries; notably, Ganguli et al. 

used a transfer learning approach to train a set of RF models on an MSHA dataset, 

applying them to predict incident types based on mine operators’ incident report narra-

tives [19]. Their system achieved a 96% overall accuracy on the operator’s incident 

reports. Note that these studies focused on realized incidents and their root causes. Fur-

ther study is needed to investigate the circumstances and precursors of injuries and 

methods to detect them in the workplace. 

3 Datasets 

3.1 Training Data Source and Corpus Preprocessing 

MSHA’s “Accident Injuries” dataset was used as a training data source for this study 

[1]. The MSHA dataset is a large, publicly available corpus describing over 245,000 

injury-causing accidents at US mine sites since 2000. In this dataset, categorical values 

are expressed with standard codes and continuous values have standard units. In partic-

ular, the dataset includes reports that are already labeled by classes of injury which 

comprise 47 body parts. For this study, the number of classes was reduced to the six 

most frequently injured areas: ankle, back, eye, hand (inclusive of fingers), knee, and 

shoulder. The remaining body parts were classified as “other”. The MSHA accident 

narratives were used as features, while the six injury classes were used as labels to train 

each model.  

For the ML algorithms (SVM and RF), the following preprocessing steps were taken: 

• Tokenization. Each entry in the corpus was converted to lowercase and split 

into a set of words. All punctuation marks were removed. 

• Stop words removal. Stop words are words that exist for semantics alone. 

Stop words were removed from our dataset using the NLTK (Natural Lan-

guage Toolkit) open-source library [20]. 

• Lemmatization. Lemmatization is the process of grouping together inflected 

forms of a word such that they may be identified as a single entity. For exam-

ple, ‘acts’, ‘acting’, and ‘acted’ are all derived from the root word ‘act’. The 

remaining words in the corpus were lemmatized. 

• Vectorization. The words were then converted into numerical vectors using 

Term Frequency-Inverse Document Frequency (TF-IDF) vectorization.  

The two NLP models required additional consideration. For FastText, features were 

appended with injury class labels in the format __label__[BODY PART]. As BERT 
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relies on the context of an input stream, stop words removal and lemmatization were 

not performed. 

 

3.2 Target Dataset Collection and Annotation 

Safety Interaction Reports (SIR). The SIR dataset included proprietary H&S records 

from an anonymous mining industry partner. This partner was a mid-sized operator in 

the Metal/Non-Metal sector with four active mine sites across North America, includ-

ing both surface and underground operations. Each SIR record contained a 1-2 sentence 

narrative describing an observation or interaction, but did not identify any specific 

safety incident or negative outcome (e.g. injury). For example, the text of a record might 

include, “Observed a partially unguarded access to the sublevel, the manhole cover 

was ajar” or “Locked out SAG mill for down day, verified the mill would not start. 

Started removing SAG liners. Made a few changes in the way it was done.” Five hun-

dred records of the SIR dataset were considered in this study. 

Three mine industry safety experts were recruited to evaluate the 500 safety interac-

tion records based on their knowledge and experience in the domain. The first expert 

(EXP1) was a certified safety professional with a background in industrial hygiene and 

10 years of field experience in occupational health; the second expert (EXP2) was a 

mine industry practitioner and certified trainer with 30 years of experience; and the 

third expert (EXP3) was a research scientist with over ten years of expertise in safety 

training and curriculum design. The three experts were asked to label each SIR record 

with one or more injury types (i.e., ankle, back, eye, hand, knee, shoulder or other) that 

could arise in that circumstance. In other words, the experts were asked to use their 

intuition to postulate injuries that might occur based on the narrative  

The manually annotated SIR dataset provides an excellent basis to examine the qual-

ity of our predictive models in a transfer learning situation that is relevant to incident 

prediction and risk analysis. First, the purpose of the safety interaction dataset differs 

substantially from that of the MSHA training data; the MSHA data deals with incidents 

that have already occurred, while the interaction reports deal with situations where a 

safety incident might feasibly occur. Second, the phrasing and terminology of the in-

teraction data are less formal and more grounded in the everyday language (vernacular) 

of the mining workplace. Finally, the interaction reports simulate difficult “what if” 

circumstances that the models could be reasonably expected to face in real-world de-

ployment. 

Incident Management Reports (IMR). IMRs describe incidents of varying severity, 

from “near misses” to fatalities. In particular, “near misses” indicate circumstances 

where either good luck or one critical control prevented an injury. Near misses and 

minor incidents are not reportable and therefore have no representation in the publicly 

available MSHA dataset. For this study, our industry partner provided access to 5,000 

recent IMR records. As with the SIR records above, each IMR record consisted of a 

few sentences of text narrative describing the circumstances of an incident. Although 

the IMR records were given a 4-level risk rating (e.g. Low, Moderate, High, and Criti-

cal) by the industry partner, they were not categorized by injury type.  
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Studies suggest that, for every significant injury or fatality, there are numerous inci-

dents with less serious injuries and even more with no injury at all [21]. The IMR re-

ports are therefore a valuable tool for analyzing and preventing future injuries, if such 

conditions (i.e. leading indicators) can be linked to injury outcomes (lagging indica-

tors); these narratives were used to discover association rules between incident key-

words and injury types in Sec. 7. 

4 Predictive Models 

In this study, we evaluated the performance of four ML/NLP methods to classify injury 

outcomes based on the text of a mine operator’s safety reports. Four popular classifier 

types are considered. SVM and RF are robust Machine Learning methods that perform 

well across a variety of classification tasks. Two NLP approaches, including FastText 

and BERT, were also selected due to their promising application in many domains and 

their large communities of active users; furthermore, both NLP models may be trained 

on a very large corpus (i.e. hundreds of millions of words). An overview of each model 

is given below. 

 

4.1 Support Vector Machines (SVM) 

SVM is a supervised learning algorithm which finds the hyperplane that best separates 

two classes based on the Structural Risk Minimization principle [22]. As SVM is in-

herently designed for binary classification, a One-vs-One (OvO) approach was used in 

this study since our dataset was roughly balanced. The OvO approach yields n*(n – 1)/2 

binary classification problems, where n is the number of classes. Each binary classifi-

cation model predicts one class label; the predicted class is then the class receiving the 

most votes. A detailed discussion on SVM for text classification may be found in [23]. 

 

4.2 Random Forest (RF) 

The RF classifier is a collection of multiple decision tree classifiers on various sub-

samples of the dataset. It uses bagging and feature randomness to create a forest of 

decision trees by ensuring low correlation among decision trees. The main advantage 

of this method is its ability to overcome overfitting. Furthermore, this factor becomes 

more important as we incorporate a transfer learning approach in our study. Details on 

the Random Forest classifier may be found in [24]. 

 

4.3 FastText 

FastText is a library for learning word embeddings for text classification. It is essen-

tially a shallow neural network with just one layer of a linear classifier. It represents 

text as a continuous bag of words (CBoW) and uses N-gram features coupled with hi-

erarchical SoftMax, with negative sampling to reduce training time. A discussion of 

FastText may be found in [25]. 

 



7 

4.4 Bidirectional Encoder Representations from Transformers (BERT) 

BERT uses a deep learning model (ANN) specialized for natural language processing 

tasks. The transformers are based on an attention model architecture that can deal with 

long-range dependencies to solve sequential tasks. BERT leverages this transformers 

architecture for language modeling; it masks 15% of the words in each sequence and 

predicts the masked words by reading the sequence from both directions. In this study, 

we used the BERT base model (cased), as it has excellent support for everyday language 

and context, having been pre-trained on over 40 gigabytes of Wikipedia articles and 

five gigabytes of book corpus data. Details on the BERT model may be found in [26]. 

5 Methodology 

5.1 The approach 

A transfer learning approach was used in this study for two reasons: First, the amount 

of partner data that we could gather and manually annotate was not large enough to 

train models without overfitting. Second, each worksite and company uses its own var-

iations of terminology and vernacular based on location, workforce demographics, and 

company operating procedures; conversely, the MSHA dataset provides an industry 

standard baseline for terminology and methods. This study will evaluate the perfor-

mance of our models in a transfer learning task in the mining H&S domain. We believe 

that a well-trained model may yield good results across mine operators and datasets for 

injury prediction tasks.   

The four ML/NLP models were trained on 50,000 rows of the preprocessed MSHA 

dataset (Sec. 3.1). Although each row of the MSHA data contains single labels for each 

incident narrative, the target dataset, as labeled by experts, had multiple labels. Thus 

the models had to be evaluated as multi-label models, yielding a two-fold challenge: 

Transferring to the model to the new type of dataset – from standard MSHA data to the 

operator’s SIR dataset – and training multi-label models based on the single labels in 

the training dataset.  

  

5.2 Experimental Setup and Hyperparameter Tuning 

Three models, including SVM, RF, and FastText, were trained using a train-test split 

of 90-10, while BERT used a train-validate-test split of 80-10-10. Note that we used 

the GridSearchCV method to perform Ten-Fold Cross-Validation when training the 

SVM and RF models. To analyze the models’ performance, they were first evaluated 

on 5,000 arbitrary rows of the MSHA dataset; the models were then evaluated against 

500 rows of the SIR dataset (Sec. 3.2) during the transfer learning task. 

Two computer configurations were used for training. To train the SVM, RF, and 

FastText models, we used an Apple computer running macOS 12.4 with an 8-core M1 

CPU running at 3.2 GHz with 8GB of memory. To train BERT, a Nvidia Volta-based 

GPU with 32 GB of memory was used. The latter system provided 5,120 CUDA Cores 
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and 640 Tensor Cores, offering a tensor performance of 112 TFLOPS and a memory 

bandwidth of 900GB/sec.  

Each of the four models was configured and its hyperparameters tuned as follows: 

 

SVM. Scikit-learn’s Support Vector Classification (SVC) is an implementation based 

on libsvm and was used for this study. TF-IDF vectors were used as inputs for the 

model, as they performed better than TF alone. Tests were then run with two kernels: 

linear and radial basis function. The linear kernel provided the best fit for this study. 

Two additional hyperparameters where considered while configuring the model: C 
value and Gamma. The C value is a penalty parameter that determines the number of 

misclassifications allowed for the model, while Gamma controls the influence distance 

of each training point. To find the best parameters, Grid Search was performed with C 
value – {0.1, 1.0, 10, 100, 1000} and Gamma –{1.0, 0.1, 0.01, 0.001, 0.0001}. Among 

these values, setting both C value and Gamma at 1.0 gave the best model performance.  

 

Random Forest. Scikit-learn’s ensemble RF Classifier was used for this study. Similar 

to SVM, TF-IDF vectors were used as inputs. Five hyperparameters were considered: 

1) n_estimators determines the number of decision trees in the forest, such that a 

greater number of trees increases accuracy but also leads to overfitting and longer train-

ing time; 2) max_features limits the maximum number of features considered while 

making a split in the decision tree; 3) max_depth limits the maximum depth of a tree 

to reduce overfitting; 4) min_samples_split determines the number of samples re-

quired to split a node in a tree; and 5) min_samples_leaf guarantees a minimum 

number of samples in the leaf node. Since experimenting with all combinations of pa-

rameters factorially increases training time, most hyperparameters were given default 

values. Grid Search was performed to find the best values for n_estimators – {100, 

200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000}, max_depth – { 10, 20, 30, 

40, 50, 60, 70, 80, 90, 100, none} and max_features – {auto, sqrt}. Best values 

were found to be n_estimators = 100, max_depth = none, and max_features = 

sqrt. We also considered the criterion function, which measures the quality of a 

split; gini was found to provide the best performance across all classification tasks.   

 

FastText. The open-source FastText Application Programming Interface was used for 

this study. As discussed in Sec. 3, the model expects each line of text to start with a 

__label__ prefix, followed by text of the narrative. The training and validation dataset 

were converted to lowercase before being passed as inputs to the model. FastText’s 

autotune feature was used to automatically find the best hyperparameters. The param-

eter autotune-duration was used to determine the training duration. Different con-

figurations of hyperparameters were tested, including epoch – {1 to 100}, learning 
rate – {0.01 to 5.0}, and wordNgrams – {1 to 5}. Note that epochs determines the 

number of training cycles to be completed, while the learning rate determines the 

step size at each iteration minimizing the loss function, and wordNgrams refers to a 

continuous sequence of n items from the given sample set. The best-performing hy-

perparameters were found as follows: epoch = 3, learning rate = 0.05, word-
Ngrams = 2, and loss function = SoftMax. 
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BERT. The BERT base model (cased) from the Hugging Face library was used for our 

multi-labeling problem. BERT accepts a maximum of 512 tokens as input. Since our 

narratives mostly exceeded the 512-token limit, they were truncated automatically. An 

alternate approach involved splitting each narrative into multiple subtexts and classify-

ing the incident based on a voting mechanism. The truncation method was selected for 

this study due to computational constraints. While evaluating the model’s performance 

on the MSHA dataset, the final output layer was passed through a SoftMax function to 

convert the prediction scores to probabilities. While evaluating the performance on the 

partner datasets, since multiple labels had to be determined, the final layer was also 

passed through a Sigmoid function. We used cross-entropy loss as the criterion 

function, as it generally yields superior performance to the square-loss function. Note 

that the criterion is used to signal the end of training for deep learning models; given 

an input and target, a gradient is computed according to the given loss function. We 

used the Adam optimizer [27] for this study and considered two hyperparameters – 

learning rate and epochs. The best performing values were found to be 1e-6 and 

5, respectively. 

6 Results and Discussion 

To evaluate model performance, the top K (K=1 and K= 4) machine-predicted labels 

were checked against the actual labels – i.e., as provided by experts in the transfer 

learning task. K=1 essentially evaluated the models based on their multi-class classify-

ing capability, while K=4 was used to check if a model had reasonable multi-label pre-

diction capabilities. K=4 was chosen, as 4 was the maximum number of labels provided 

by an expert for any record. The evaluation metrics used included Precision, Recall, F1 

Score, and Support. As this problem does not value Precision over Recall or vice versa, 

the F1 Score was used to evaluate the performance of each model. Furthermore, since 

our dataset was roughly balanced, we considered the micro average as the accuracy 

score of our models.   

 

6.1 Results on the MSHA dataset 

After the models were trained on the MSHA dataset, they were tested with an arbitrary 

5,000 rows of unseen data. The performance results are given in Table 2. As there were 

single labels for each incident, these scores may be interpreted as multi-class classifi-

cation scores. 

Table 1. F1 Scores of four predictive models with MSHA dataset. 

MODEL PRECISION RECALL F1 SCORE 

SVM 0.901 0.899 0.899 

RF 0.902 0.897 0.898 

FAST 0.857 0.863 0.854 

BERT 0.886 0.884 0.884 
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Note that SVM yielded the highest F1 Score (89.9%), closely followed by RF and 

BERT. Note that Fast Text has only a ~4% lower F1 score than the best-performing 

model, SVM.  

 

6.2 Results with SIR dataset 

The F1 scores for the transfer learning task are reported for K=1 (Table 3). As before, 

this may be interpreted as multi-class classification scores.   

Table 3. F1 Scores of four predictive models with SIR dataset, using three experts’ labels as 

Ground Truth. 

MODEL EXP 1 

F1 SCORE 

EXP 2 

F1 SCORE 

EXP 3 

F1 SCORE 

AVG 

F1 SCORE 

SVM 0.462 0.504 0.612 0.526 

RF 0.484 0.512 0.646 0.547 

FAST  0.382 0.426 0.478 0.429 

BERT 0.39 0.456 0.516 0.454 

 

Note that the performance of the models drops by 30%-40%. Unlike the MSHA da-

taset, the SIR data includes a collection of narratives where no injury was reported, yet 

an injury could occur. Indeed, predicting injuries in this context is a difficult task, even 

for domain experts who possess the power of intuition based on decades of training and 

experience; for this reason, we also allowed the experts to suggest more than one label 

for each report.  

  

6.3 Comparison of Machine Results vs Expert Predictions 

As a better indicator of model performance, it is to useful to examine the perfor-

mance of each expert (Table 4). To interpret these scores, we may think of each expert 

as a (human) predictive model. Each expert’s predictions may be compared against the 

ground truth of two other experts, and thus an average performance score calculated. 

Note that “Labels Predicted” is a measure of the total number of predicted labels for 

the 500 reports by each of the experts; furthermore, since more than one label can be 

present for a single report, all support values are greater than 500.  

Table 4. Micro averages of Precision, Recall, and F1-Scores for each expert using two other 

experts as Ground Truth. 

EXPERT AVG 

PRECISION 

AVG 

RECALL 

AVG  

F1 SCORE 

LABELS 

PREDICTED 

EXP 1 0.560 0.423 0.481 1014 

EXP 2 0.548 0.534 0.537 842 

EXP 3 0.503 0.654 0.568 704 
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Similarly, consider the (machine) model predictions at K=4, using the three experts' 

predictions as a ground truth with all labels considered (Table 5). Note that the Recall 

scores are considerably higher than the Precision scores. This outcome is expected, as 

the K value has increased from 1 to 4. At K=4, BERT performed considerably worse 

than the other models; possible reasons for this disparity may include the truncation of 

the narratives to 512 tokens or overfitting of the model to the MSHA data.  

Table 5. Micro averages of Precision, Recall, and F1-Scores for all three experts at K = 4. 

The Final Average (micro average) Precision, Recall, and F1 Scores (Table 5) may 

be compared to the Average F1 Score of the three experts (Table 4). In this context, 

three models perform favorably. Indeed, with the exception of BERT, the models have 

a final average F1 Score that is comparable to each experts’ prediction scores when 

using the other experts as a Ground Truth; the machine models are 97% as good as the 

experts in the best case comparison (i.e. SVM vs. EXP1) versus 81% as good in the 

worst case (FastText vs. EXP3). Note that, in this analysis, the machine models’ pre-

dictions are compared against three ground truths (all 3 experts), whereas the experts’ 

predictions are compared against two ground truths (2 other experts).  

7 Application in the Mining Industry 

Leading indicators can provide H&S professionals with new avenues to prevent injuries 

and illnesses in the workplace by allowing them to improve risk management processes 

and controls hierarchies. To be effective, leading indicators must be concise, intuitive, 

and validated by empirical evidence. Our goal is to help mine operators answer several 

key questions relating to the lagging indicators (i.e. the injury classes) selected in this 

study:  

● Behaviors. Are crews or workers fit for duty and adequately trained for work 

areas and jobs?  

● Environments. Are work areas consistently safe, or are there issues sugges-

tive of hazards? 

● Operations. Are standard operating procedures adequate, and are personnel 

following them in practice? 

As a step toward developing leading indicators, we used ARM to align key words in 

incident narratives with each injury class. Our industry partner’s IMR dataset was used 

for this analysis. The IMR dataset considers incidents that did occur and thus may have 

MODEL EXP 1 EXP 2 EXP 3 Final Average 

P R F1 P R F1 P R F1 P R F1 

SVM 0.367 0.729 0.49 0.346 0.816 0.483 0.289 0.794 0.413 0.332 0.787 0.471 

RF 0.348 0.686 0.462 0.347 0.824 0.488 0.29 0.824 0.429 0.327 0.778 0.462 

FAST 0.359 0.708 0.476 0.343 0.814 0.482 0.280 0.794 0.413 0.326 0.771 0.461 

BERT 0.246 0.485 0.326 0.116 0.274 0.163 0.111 0.315 0.164 0.173 0.390 0.228 
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caused negative outcomes ranging from negligible to fatal. The partner IMR records 

were used for this analysis, as opposed to the MSHA dataset, for three reasons: First, 

the IMR records include additional data and incidents which do not rise to the level of 

reportable and thus do not exist in the MSHA dataset; second, the reports are less formal 

and more grounded in vernacular; and third, the output rules should be more contextu-

ally relevant and thus of greater utility for domain users. 

 

7.1 Association Rule Mining on FastText-Labeled IMR Dataset 

ARM was used to develop simple association rules between keywords and injury 

types based on the empirical evidence in our partners’ IMR dataset. As the IMR narra-

tives were not specifically labelled by injury class, we selected a high-performing pre-

dictive model (Sec. 6) to automatically label 5,000 narratives each with an injury class. 

FastText was used for this task, as its performance compared favorably yet its compu-

tational performance exceeded the other models; a computational performance assess-

ment of FastText may be found in [25]. 

After labeling each incident narrative with an injury class, we extracted keywords 

from the reports by combining two different methods: (1) Using Structural Topic Mod-

eling (STM) with an 8-topic model; and (2) Using Topic Modeling with TF-IDF to 

generate a document-term matrix from which keywords were extracted. Note that eight 

classes of injuries were used in this analysis, which included the six classes identified 

previously, plus “Wrist” and “Other”. Both the STM and TM with TF-IDF methods 

produced good results for approximately half of the injury classes and confusing results 

for the other half. We also noted considerable amounts of overlap between classes. For 

example, we found that, even after removing stop words, the narratives of any pair of 

injury classes had >30% keyword overlap with each other using the 8-topic STM. This 

finding may suggest that different injury classes occur under similar circumstances or 

contexts; it also informs the types of the goodness of fit measures that may be more 

suitable to ARM (discussed below) – in particular, Confidence and Lift may be better 

measures of goodness than the Kulczyinski Method or Imbalance Ratio. 

Discovery of Association Rules. After labelling and Topic Modeling, the class labels 

and keywords of each record were merged to create “transactions” for the ARM method 

a priori. The ARM process discovers human-readable rules in the following format: 

[left hand indicators] → [right-hand indicators] (support, confidence) 

To understand this syntax, consider the rule “smoking -> lung cancer (0.05, 0.30)”. This 

rule states that, within the dataset mined, 5% of the people smoke, and among those 

people, 30% of them get lung cancer. Details on the ARM technique may be found in 

[28]. The rules generation process yields an arbitrarily large number of candidate rules 

which may be ranked by a “measure of goodness” criterion. For reasons outlined above, 

Confidence was used as the measure of goodness for this study, with a Confidence 

threshold of 80% (0.80) as the inclusion criterion. In total, 149 rules satisfied this cri-

terion across the seven classes of injury (i.e. excluding catch-all category “Other”). A 

visualization of the association rules and their supports may be found in Fig. 2. 
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Fig. 2. A visualization of association rules and support values for six classes of injuries. 

Evaluation of Association Rules. Although association rules may be discovered with 

high Confidence by the ARM technique, this does not mean that the rules are them-

selves meaningful for improving H&S. Domain experts were asked to evaluate the rules 

in terms of their intuitiveness – that is, the rules reveal interesting associations between 

classes of injury and potential correlating factors – and their applicability to safety man-

agement processes, such as for improving controls hierarchies or training. 

For this evaluation, we invited four experts to survey the rules and evaluate them as 

being either “useful” (i.e., interesting and/or applicable) or “not useful” (i.e., too vague, 

or nonsensical). Three of these experts (EXP1-3) participated in the model performance 

assessment outlined previously (Sec. 6). A fourth expert (EXP4) had over 25 years of 

mining management experience and held a senior leadership position as head of a major 

operator’s H&S department. Each expert provided their ratings independently. 

 
7.2 Correlation between Scores and the Usefulness of a Rule 

A survey of the experts’ Usefulness ratings is given in Table 6. We used a binary clas-

sification to label each rule as either Useful=1 or Not Useful=0 for each of the four 

experts. The cumulative usefulness score indicates the number of rules satisfying each 
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level of expert consensus. For instance, for the “Eye” class of injury, 5 rules (out of 61 

candidates) were unanimously voted as useful by all four experts, while 17 rules were 

voted as useful by three or four experts. Notably, half of the association rules were rated 

as Useful by at least one expert (Cumulative Usefulness > 0) and 39 rules had a high 

level of consensus as being Useful (Cumulative Usefulness = 3 or 4) for safety man-

agement processes, such as for improving controls hierarchies or training. 

Table 6. Number of association rules labeled as “Useful” by experts for each injury class. 

Injury Class # of Rules labeled as useful by N experts Total Rules 

N = 0 N = 1 N = 2 N = 3 N = 4 

ANKLE 0 4 0 1 2 7 

BACK 13 5 4 5 3 30 

EYE 30 3 11 12 5 61 

FINGER 24 5 6 7 4 46 

HAND 1 0 0 0 0 1 

SHOULDER 0 0 1 0 0 1 

WRIST 1 0 2 0 0 3 

 

Correlation analysis was then performed to identify the relationships between ex-

perts’ Usefulness scores and the various measures of goodness. As shown in Table 7 

below, Confidence, Lift, and Certainty all positively correlated with the experts’ rat-

ings, while an inverse relationship was noted for Support, Coverage, and Count. 

n = Table 7. Number of association rules labeled as “Useful” by experts for each injury class. 

MEASURE CORRELATION 

SUPPORT -0.24 

CONFIDENCE 0.28 

COVERAGE -0.25 

LIFT 0.11 

COUNT -0.24 

COSINE -0.08 

CERTAINTY 0.29 

LEVERAGE -0.22 

 
7.3 H&S Outputs and Outcomes 

Association Rules represent a significant contribution of this project, as they provide 

operators with insights from their own reporting processes. The 39 rules judged to be 

of high utility are given in Table 8. These rules are now being used by partners to revise 
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their risk assessment and management plans. A sample of the high utility rules and 

outcomes included the following:  

1) Back injuries were more often reported when “morning” was listed in the de-

scription, suggesting a need for stretching and warm-up before job activities;  

2) The five most common terms associated with hand injuries all related to fingers, 

with “pinch” occurring 2nd most frequently, even though it may be less obvious 

as a mechanism of significant injury;  

3) Eye injuries were frequently associated with the word “dust”, suggesting that 

many incidents were due to dust contamination and subsequent irritation; there 

may be a need for better training around eye PPE as well as additional areas 

where eyewear is warranted. 

Mitigation strategies are being developed for each of the 39 rules, including new train-

ing tools for annual refreshers that target many of the contextual situations for injury 

that are suggested by these rules.  

Table 8. Association rules judged to have high utility by four mining safety experts. 

{keywords}         →        {injury-type}   {keywords}           →             {injury-type} 

ankle, mud ANKLE dust, felt EYE 

ankle, rolled ANKLE air, face EYE 

ankle, hole ANKLE hose, received EYE 

felt, muck BACK glasses, wearing EYE 

felt, picked BACK glasses, safety, wearing EYE 

felt, heat BACK received, safety, wearing EYE 

bent, felt BACK glasses, received wearing EYE 

down, seat BACK glasses, received, safety, wearing EYE 

felt, seat BACK hit, pinch FINGER 

felt, morning BACK guardrail, stuck FINGER 

down, ice BACK scissor, stuck FINGER 

received, rinsed EYE frame, tractor FINGER 

face, sprayed EYE jack, stuck FINGER 

eyewash, received EYE gloves, index FINGER 

cement, received EYE index, stuck FINGER 

face, valve EYE gloves, pipe FINGER 

entered, hold EYE drill, stuck FINGER 

face, pressure EYE gloves, wearing FINGER 

dust, glasses EYE chisel, stuck FINGER 

dust, received EYE   
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8 Conclusions and Future Work 

Occupational exposures and safety hazards remain key considerations in high risk 

industries. In this study, we have assessed the performance of four ML/NLP methods, 

including SVM, RF, FastText, and BERT, to predict injuries based on the safety narra-

tives in a partner’s H&S reporting corpus. Using a transfer learning approach to train 

the models with a large and publicly available MSHA dataset, we obtained performance 

rates in predicting injuries that are 81%-97% as good as domain experts, suggesting the 

power of ML/NLP approaches to match human intuition on this task. Furthermore, 

ARM was used to generate association rules linking keywords in incident reports with 

injury types. A total of 39 high confidence (>0.80) association rules were deemed useful 

and intuitive to domain experts; these rules represent a step toward linking positive 

H&S outcomes with actionable leading indicators that operators may use to improve 

their risk management protocols and controls hierarchies.  

We are now evaluating the predictive models with other partners in the mining in-

dustry to verify the robustness of the transfer learning process. Future work will con-

sider a new predictive dashboard that provides feedback to operators as new narratives 

are entered into their H&S management systems. Specific mitigations, including re-

fresher training and controls, will be recommended by the dashboard to address any 

risks discovered in these narratives. Ultimately, we believe these NLP and ML-enabled 

technologies will lead to smarter H&S management systems in the workplace, with new 

predictive models that allow companies in high risk industries to proactively address 

hazardous conditions and reduce the risk of injury to their workforce.  
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