Toward a Systems Framework Coupling Safety Culture, Risk Perception, and Hazard Recognition for the Mining Industry

Leonard D. Brown
Ngan H. Pham
Jefferey L. Burgess
Introduction

- **Goal:** Reduce hazards and risks to worker health and safety
 - U.S. Mining Industry is a focus of study
 - Applicable to many others: Construction, manufacturing, oil & gas, transport, etc.

- Industry using increasingly robust health and safety management programs
 - Sophisticated procedures and processes
 - Sophisticated software systems (SMS)

- **Challenge:** *Reactive* approaches to safety
Leading Versus Lagging Indicators

Leading Indicators (Upstream Monitoring)

Learn

Predict

Lagging Indicators (Undesired Events)

Time

SMS Data

7000-1
Toward a Systems Framework

• Variables: Indicators are observable, but there are many latent (hidden) variables that interact to determine outcomes

• Studies have examined many of these factors in mining industry
 • Worker and manager risk attitudes and risk perception
 • Levels of work experience and health & safety training
 • Situational awareness and hazards recognition capability
 • Organizational safety culture and operating procedures

• A holistic understanding is needed: Key factors and interactions
 • For example, covariances and causal relationships (direct and indirect)
 • Motivation: These ideas have been explored in other heavy industries
Study Goals and Deliverables

<table>
<thead>
<tr>
<th>Goals</th>
<th>Methods</th>
<th>Deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate findings across industries where safety is major concern</td>
<td>Literature Survey</td>
<td>Candidate Factors and Models</td>
</tr>
<tr>
<td>Apply inductive processes to identify common factors and relationships</td>
<td>Model Consolidation</td>
<td>Meta-Model</td>
</tr>
</tbody>
</table>
Literature Survey

• Survey metrics:
 • 44 articles considering 10 heavy industries
 • Over 80% of articles published since 2012

• Search terms:
 • “safety culture”, “risk perception”, and “hazard recognition”
 • “analysis”, “assessment”, “factors”, “risk”, “perception”, “root cause analysis”, and “safety”

Inclusion Criteria

• Peer-reviewed journal
• In specific topic areas
• Article had >40+ cites

Exclusion Criteria

• Articles <2 years old

Note: Three articles were included due to their relevance to this study, even though they did not meet the age / citation requirement.
Literature Survey Findings

• Identified candidate models and factors
 • 12 analytical models: SEM, Systems Thinking, Measurement Model, BBN
 • 70+ factor labels: Worker cognition and behavior, community, processes

• Requirements for consideration of model
 • Well-defined model with correlation relationships, ideally diagrammed
 • Evidence-based validation, versus speculative or purely conceptual
 • Covered at least 2 of safety culture, risk perception, and hazard recognition

• Observation: Similar constructs, relationships
Analytical Models

• Systems Thinking Approaches:
 • Explore **dynamics of a system** and interactions between components
 • Capture systemic processes, behaviors, and communications
 • Built using **loops** (e.g. reinforcing, balancing) and **delays**
 • Characterized via **archetypes** (e.g. shifting of burden, complacency, incentivizing/eroding safety, etc.)

(Shin et al. 2014)
Analytical Models

• Structural Equation Models (SEM):
 • Investigate causal relationships among factors (variables) in system
 • Broad leverage to determine what constructs are factors in system
 • Models both observable and latent factors in individual and community
 • May perform hypothesis testing using statistical methods (e.g. goodness of fit, confirm. factor analysis)

(You et al. 2013)
Model Consolidation

• A type of inductive analysis
 • Objective: Build **consensus meta-model** describing data
 • Used study models selected from our literature review
 • Grounded in *Contextual Design* (Beyer & Holtzblatt, 2017)

• Consolidation process:
 • **Open coding**: Identify relevant features (factors, paths)
 • **Axial coding**: Crosswalk, group, label similar features
 • **Selective coding**: Add features to final meta-model if they satisfy the **consensus threshold**

(Martinez-Jurado et al. 2014)
Model Consolidation Challenges

• **Consensus**: How to choose threshold?
 • Subjective: Should capture enough information into the meta-model
 • Draw motivation from common practices in analysis of factor consistency

• **Closure**: How many models are enough?
 • Grounded Theory motivation: When new models don’t provide any new findings
 • Reaching a closure state doesn’t require an exhaustive review

<table>
<thead>
<tr>
<th>Component</th>
<th>Threshold High</th>
<th>Threshold Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factors</td>
<td>75%</td>
<td>50%</td>
</tr>
<tr>
<td>Paths</td>
<td>50%</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selected</th>
<th>Closure</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>
C-P-R Meta-Model

- **Safety Culture**
- **Perception of Risk**
- **Recognition Process**
C-P-R Meta-Model

• **Safety Culture**

• **Perception of Risk**

• **Recognition Process**

[Diagram showing the relationship between Safety Culture, Perception of Risk, and Recognition Process, with internal and external factors, and thresholds indicated by solid and dotted lines.]
Discussion

• How can the **C-P-R Meta-Model** help us?
Discussion

• How can the C-P-R Meta-Model help us?

1. **Descriptive Analysis:** Understand the structure of the system and causal relationships among factors; Allow us to focus efforts on meaningful interventions.

 • Consider the impacts of external influences on workers’ thinking
 • Example: The impacts of experience and training on risk perception
 • Are there other interactions or factors not yet considered? Likely!
Discussion

• How can the C-P-R Meta-Model help us?

2. Evaluative Analysis: Validate and improve existing model; Deploy interventions and observe changes on outcomes based on model.

 • Use Confirmatory Factor Analysis (CFA) to refine the model’s pathways
 • Example: Implement new training technique to show consequences of hazards and run tests to evaluate impacts on system
 • Can mediating or indirect paths be utilized to improve H&S outcomes?
Discussion

• How can the **C-P-R Meta-Model** help us?

3. **Generative Analysis:** Develop computational models for resiliency testing; Explore hypothetical scenarios and simulate outcomes.

 • Develop a Systems Thinking model that captures the factors and pathways of our meta-model. (See Ma, Wu, & Chang, 2021)

 • Example: Use a worker survey to collect data on risk perception and use that data to predict possible negative outcomes, such as eroding safety conditions or unsafe behaviors.

 • Can such a model be used to reliably predict outcomes for mine operators?
Conclusions

• **Contribution**
 • Insight into key modeling methods for safety culture, risk perception, and hazard recognition
 • Potential factors (latent and observable) and their causal pathways
 • Consensus meta-model for further exploration in mining

• **Future work**
 • Validate of **C-P-R Meta-Model** with mining partners
 • Explore / translate to a Systems Thinking approach
 • Develop a system of **predictive analytics** for SMS
Acknowledgements

• Contact: ldbrown@arizona.edu

• Research & development
 • Zuckerman College of Public Health
 • Lowell Institute for Mineral Resources

• Sponsors & grants
 • NIOSH (Grant U60 OH010014-08)
 • MSHA (Brookwood-Sago Grants)
 • UA SMMR Research & Innovation Grant
© 2022 The Arizona Board of Regents on behalf of the University of Arizona.